Grade 7 Mathematics Vocabulary Word Wall Cards

Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should be used as an instructional tool for teachers and then as a reference for all students.

Number and Number Sense

Powers of Ten
Scientific Notation
Comparing Numbers in Scientific Notation
Rational Numbers
Comparing Rational Numbers
Perfect Squares
Square Root
Absolute Value

Computation and Estimation

Proportion
Ratio Table
Scale Factor
Proportional Reasoning
Proportional Reasoning: Using Benchmarks
Measurement and Geometry
Rectangular Prism
Volume of a Rectangular Prism
Surface Area of a Rectangular Prism
Cylinder
Similar Figures
Similar Figures and Proportions
Quadrilateral Relationships
Parallelogram
Rhombus
Rectangle
Square
Trapezoid
Line of Symmetry

Reflection

Translation

Probability and Statistics

Probability
Theoretical Probability
Experimental Probability
Histogram
Comparing Graphs: Histogram and Stem and Leaf Graph
Comparing Graphs: Histogram and Circle Graph
Comparing Graphs: Histogram and Line Plot
Patterns, Functions and Algebra
Slope
Unit Rate
Proportional Relationship: $\mathrm{y}=\mathrm{mx}$
Proportional Relationship
Additive Relationship: $\mathrm{y}=\mathrm{x}+\mathrm{b}$
Additive Relationship
Graphing Linear Relationships
Connecting Representations: Proportional
Relationship
Connecting Representations: Additive
Relationship
Order of Operations
Verbal and Algebraic Expressions and
Equations
Equation
Inequality

Powers of Ten

Power of Ten	Meaning	Value
10^{5}	$10 \cdot 10 \cdot 10 \cdot 10 \cdot 10$	100,000 One hundred thousand
10^{4}	$10 \cdot 10 \cdot 10 \cdot 10$	10,000 Ten thousand
10^{3}	$10 \cdot 10 \cdot 10$	1,000 One thousand
10^{2}	$10 \cdot 10$	100 One hundred
10^{1}	10	10 Ten
10^{0}	1	1 One

Scientific Notation

$a=$ Coefficient (a number that is greater than or equal to 1 and less than 10)

$$
\begin{aligned}
& 10=\text { Base } \\
& n=\text { Exponent (a number that is an integer) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Examples } \\
& 17,500,000=1.75 \times 10^{7} \\
& 0.0000026=2.6 \times 10^{-6} \\
& 5.3 \times 10^{10}=53,000,000,000 \\
& 4,421.952=4.421952 \times 10^{3}
\end{aligned}
$$

Comparing Numbers in Scientific Notation

Planet Diameter Table (km)

Planet	Diameter (km)	Scientific Notation
Mercury	$4,879 \mathrm{~km}$	$4.879 \times 10^{3} \mathrm{~km}$
Venus	$12,104 \mathrm{~km}$	$1.2104 \times 10^{4} \mathrm{~km}$
Earth	$12,756 \mathrm{~km}$	$1.2756 \times 10^{4} \mathrm{~km}$
Mars	$6,792 \mathrm{~km}$	$6.792 \times 10^{3} \mathrm{~km}$
Jupiter	$142,984 \mathrm{~km}$	$1.42984 \times 10^{5} \mathrm{~km}$
Saturn	$120,536 \mathrm{~km}$	$1.20536 \times 10^{5} \mathrm{~km}$
Uranus	$51,118 \mathrm{~km}$	$5.1118 \times 10^{4} \mathrm{~km}$
Neptune	$49,528 \mathrm{~km}$	$4.9528 \times 10^{4} \mathrm{~km}$

https://nssdc.gsfc.nasa.gov/planetary/factsheet/

https://en.wikipedia.org/wiki/Solar System

Rational Numbers

Real Numbers

The set of all numbers that can be

 written as the ratio of two integers with a non-zero denominator$$
\begin{gathered}
\text { Examples } \\
2 \frac{3}{5},-5,0,0.3, \sqrt{16}, 0 . \overline{66}, \frac{13}{7}
\end{gathered}
$$

Comparing Rational Numbers

(2)

Values for numbers get smaller as move further to the left on the

$$
\begin{aligned}
& -\frac{5}{2}<\frac{1}{2} \text { or } \frac{1}{2}>-\frac{5}{2} \\
& -2>-\frac{5}{2} \text { or }-\frac{5}{2}<-2 \\
& -2<2 \frac{1}{2} \text { or } 2 \frac{1}{2}>-2
\end{aligned}
$$

Perfect Squares

$$
\begin{aligned}
& 0^{2}=0 \cdot 0=0 \\
& 1^{2}=1 \cdot 1=1 \\
& 2^{2}=2 \cdot 2=4 \\
& 3^{2}=3 \cdot 3=9 \\
& 4^{2}=4 \cdot 4=16 \\
& 5^{2}=5 \cdot 5=25
\end{aligned}
$$

Square Root

any number which, when multiplied by itself, equals the number

radical symbol

$$
\sqrt{25}=\sqrt{5 \cdot 5}=\sqrt{5^{2}}=5
$$

Squaring a number and taking a square root are inverse operations.

Absolute Value

distance a number is from zero

$$
\begin{gathered}
\text { Proportion } \\
\text { a statement of equality } \\
\text { between two ratios } \\
\frac{a}{b}=\frac{c}{d} \quad a: b=c: d \\
a \text { is to } b \\
\text { as } c \text { is to } d \\
\text { Example } \\
\frac{2}{5}=\frac{4}{10} \quad 2: 5=4: 10 \quad \begin{array}{l}
2 \text { is to } 5 \text { as } \\
4 \text { is to } 10
\end{array}
\end{gathered}
$$

Ratio Table

a table of values representing a proportional relationship that includes pairs of values that represent equivalent rates or ratios

Example

Terry's neighbor pays him $\$ 17$ for every 2 hours he works. Terry works for 8 hours on Saturday.

A ratio table represents the proportional relationship:

Hours	1	2		4	8
Pay in \$	$?$	17	$\cdot 8.5$	34	$\cdot 8.5$
$?$					

How much does Terry earn per hour?

$$
\frac{17}{\mathbf{2}}=\frac{?}{1} \quad \text { Terry earns } \$ 8.50 \text { per hour }
$$

How much will Terry earn in 8 hours?
$\$ 8.50 \cdot 8=68.00$ He will earn $\$ 68.00$ in 8 hours.

Scale Factor

 a number which scales, or multiplies, a quantity Figures A and B are similar

What is the scale factor (scaling up) from figure A to figure B?

$$
\text { Scale factor }=\frac{14}{8}=\frac{7}{4}=1.75
$$

What is the scale factor (scaling down) from figure B to figure A?

$$
\text { Scale factor }=\frac{8}{14}=\frac{4}{7}
$$

Proportional Reasoning

About how many centimeters are in 2 feet if 1 inch is about 2.5 centimeters?

$$
\frac{1}{2.5}=\frac{24}{x} \longleftarrow 2 \text { feet }=24 \text { inches }
$$

There are approximately 60 centimeters in 2 feet

About how many liters are in 3 gallons if 1 quart is approximately 0.95 liters?

There are approximately 11.4 liters in 3 gallons.

Proportional

 Reasoning
Using benchmarks

A meal at a restaurant costs a total of $\$ 35.00$. Sharon wants to leave a tip.

Percent	Cost of meal	Percentage or tip
5%	$\$ 35.00$	$\$ 1.75$
10%	$\$ 35.00$	$\$ 3.50$
15%	$\$ 35.00$	$\$ 5.25$
20%	$\$ 35.00$	$\$ 7.00$

To find 10% of $\$ 35.00$ calculate $0.10(\$ 35.00)=\$ 3.50$
Using $\$ 3.50$ as a benchmark, for example, we can then determine the 20% tip by doubling to $\$ 7.00$ or the 5% tip by halving to $\$ 1.75$.

Rectangular Prism

 a polyhedron in which all six faces are rectangles

Volume $=$ area of the base times the height

$$
V=B h
$$

Surface area $=$ height times the perimeter plus twice the area of the base

$$
\text { S.A. }=h p+2 B
$$

Volume of a

Rectangular Prism

$$
\begin{aligned}
& \text { Volume }=\text { length } \cdot \text { width } \cdot \text { height } \\
& \qquad V=I w h
\end{aligned}
$$

Surface Area of a
 Rectangular Prism

Surface Area (S.A.) = sum of areas of faces

$$
S . A .=2 / w+2 l h+2 w h
$$

Cylinder

a solid figure formed by two congruent parallel faces called bases joined by a curved surface

Volume $=$ area of the base x height $V=\pi r^{2} h$

$$
\text { S.A. }=2 \pi r^{2}+2 \pi r h
$$

Similar Figures

$\mathrm{ABCD} \sim \mathrm{HGFE}$	
Angles	Sides
$\angle \mathrm{A}$ corresponds to $\angle \mathrm{H}$	$\overline{\mathrm{AB}}$ corresponds to $\overline{\mathrm{HG}}$
$\angle \mathrm{B}$ corresponds to $\angle \mathrm{G}$	$\overline{\mathrm{BC}}$ corresponds to $\overline{\mathrm{GF}}$
$\angle \mathrm{C}$ corresponds to $\angle \mathrm{F}$	$\overline{\mathrm{CD}}$ corresponds to $\overline{\mathrm{FE}}$
$\angle \mathrm{D}$ corresponds to $\angle \mathrm{E}$	$\overline{\mathrm{DA}}$ corresponds to $\overline{\mathrm{EH}}$

Corresponding angles are congruent. Corresponding sides are proportional.

Similar Figures and

Proportions

ABCD ~ HGFE

$\frac{D C}{E F}=\frac{A D}{H E}$
$\frac{4}{2}=\frac{12}{6}$

Quadrilaterals

 Relationships

 Relationships}

Parallelogram

- opposite angles are congruent - opposite sides are parallel and congruent
- diagonals bisect each other

Rhombus

- 4 congruent sides
- 2 pairs of parallel sides
- opposite angles are congruent
- diagonals bisect each other at right angles

Rectangle

- 4 right angles
- opposite sides are parallel and congruent
- diagonals are congruent and bisect each other

Square

- regular polygon
- 4 right angles
- 4 congruent sides
- 2 pairs of parallel sides
- diagonals are congruent and bisect each other at right angles

Trapezoid

- exactly one pair of parallel sides
- may have zero or two right angles
- may have zero or one pair of congruent sides

Line of Symmetry

divides a figure into two congruent

 parts, each of which are mirror images of the other

Reflection

a transformation in which an image is formed by reflecting the preimage over a line called the line of reflection (all corresponding points in the image and preimage are equidistant from the line of reflection)

The preimage of triangle DEF is reflected across the y-axis to create the image $D^{\prime} E^{\prime} F^{\prime}$

Preimage	Image
$D(1,-2)$	$D^{\prime}(-1,-2)$
$E(3,-2)$	$E^{\prime}(-3,-2)$
$F(3,2)$	$F^{\prime}(-3,2)$

Translation

a transformation in which an image is formed by moving every point on the preimage the same distance in the same direction

The preimage of rectangle ABCD is translated 5 units to the left and 3 units down to create the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$

Preimage	Image
$A(1,2)$	$\mathrm{A}^{\prime}(-4,-1)$
$B(4,2)$	$\mathrm{B}^{\prime}(-1,-1)$
$\mathrm{C}(4,4)$	$\mathrm{C}^{\prime}(1,1)$
$\mathrm{D}(1,4)$	$\mathrm{D}^{\prime}(-4,1)$

Probability

if all outcomes of an event are equally likely, the probability of an event occurring is equal to the ratio (between 0 and 1) of desired outcomes to the total number of possible outcomes in the sample space

$$
P(A)=\frac{3}{7}
$$

Theoretical

Probability

the expected probability of an event

Theoretical probability of spinning the spinner and landing on blue (B) =

$$
P(B)=\frac{\text { number of possible blue outcomes }}{\text { total number of possible outcomes }}=\frac{3}{8}
$$

Experimental Probability

the probability of an event determined by carrying out a simulation or experiment

Jane spun the spinner 20 times. Her result is shown in the table.

Color	Number
Yellow (Y)	4
Green (G)	6
Blue (B)	10

Experimental probability of spinning the spinner and landing on blue =
$\frac{\text { number of possible blue outcomes }}{\text { total number of possible outcomes }}=\frac{10}{20}=\frac{1}{2}$

Histogram

a graph that provides a visual interpretation of numerical data by indicating the number of data points that lie within a range of values, called a class or a bin (the frequency of the data that falls in each class or bin is depicted by the use of a bar)

Comparing Graphs

Average Daily Temperature

Stem	Leaf
5	59
6	00000000111111222333444444444455555557789999
7	2667

$42=4 \mid 2$

The histogram provides a visual interpretation of numerical data.
The stem and leaf chart shows all the data in a set.
The stem and leaf chart can be used to find the mean, median or mode.

Comparing Graphs

Neither chart displays the entire data set.
The mode and the median can not be found without knowing all the data in a set. The histogram displays trends. The circle graph shows parts to the whole.

Comparing Graphs

The histogram provides a visual interpretation of numerical data. The line plot displays all data in the set.
The line plot can be used to find the mean, median, or mode.

Slope

a rate of change in a proportional relationship between two quantities

$$
\text { Slope }=\frac{2}{3}
$$

$$
\text { Slope }=\frac{\text { change in } y}{\text { change in } x}=\frac{\text { vertical change }}{\text { horizontal change }}
$$

Unit Rate

number of units of the first quantity of a ratio compared to 1 unit of the second quantity (also called the constant of proportionality)

A student walks 2 miles per hour

$$
\text { Unit rate }=\frac{2 \text { miles }}{1 \text { hour }}=\frac{\text { vertical change }}{\text { horizontal change }}
$$

miles

hours

Proportional Relationship

$$
\underset{(m \text { is the slope })}{y}=m x
$$

Example: $y=\frac{4}{3} x$

$$
m=\frac{4}{3}
$$

Proportional Relationship

Points representing a proportional relationship: \{(0, 0), (6, 1.5), (10, 2.5), $(20,5)$, and $(24,6)\}$.

x	0	6	10	20	24
y	0	1.5	2.5	5	6

The slope, rate of change, or ratio of y to x is

$$
\frac{y}{x}=\frac{1.5}{6}=\frac{2.5}{10}=\frac{5}{20}=\frac{6}{24}=\frac{1}{4}=0.25
$$

The equation representing the proportional relationship of y to x is

$$
y=m x \text { or } y=\frac{1}{4} x \text { or } y=0.25 x
$$

Additive

Relationship

a relationship between two quantities in which one quantity is a result of adding a value to the other quantity

$$
\begin{aligned}
& y=x+b \\
& \text { (} b \text { is the } y \text {-intercept) }
\end{aligned}
$$

Additive

Relationship

Tomas is three years younger than his sister, Maria. The table represents their ages at various times.

The difference in their ages is always -3 .
The equation representing the relationship between their ages is

$$
y=x+(-3) \text { or } y=x-3
$$

Graphing Linear Relationships

Graph the line representing the proportional relationship with slope of 2 and passing through the point $(2,4)$.

Graph the line representing the additive relationship with slope of 2 and passing through the point $(0,4)$.

$$
\text { Slope }=2=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{2}{1}
$$

Connecting

 Representations

 Representations}

Proportional Relationship

The total distance Sam walks depends on how long he walks. If he walks at a rate of 2.1 mph , show multiple representations of the relationship.

$$
d=2.1 t
$$

Connecting
 Representations

Additive Relationship

Janice started with $\$ 5$ in her piggybank. If she adds $\$ 1$ each week, show the total amount in her piggybank any week using multiple representations.

w	a
0	5
1	6
2	7
5	10

$a=w+5$

Order of Operations

Grouping Symbols $\left\{\begin{array}{c}\text { () } \sqrt{2} \\ {[1]}\end{array}\right.$

 Exponents Multiplication $\left.\begin{array}{r}\text { or Division }\end{array}\right\} \begin{aligned} & \text { Left } \\ & \text { foh } \\ & \text { right }\end{aligned}$ Addition $\left.\begin{array}{c}\text { Subtraction }\end{array}\right\} \begin{aligned} & \text { Left } \\ & \text { fo } \\ & \text { right }\end{aligned}$
Verbal and Algebraic Expressions and Equations

Verbal
 Algebraic

A number multiplied by $5 \quad 5 n$
The sum of negative two and a number
$-2+n$

The sum of five times a number and two is five

$$
5 y+2=5
$$

Negative three is one-fifth of a number increased by $-3=\frac{1}{5} x+\left(-\frac{3}{5}\right)$ negative three fifths

Equation

a mathematical sentence stating that two expressions are equal

$$
\begin{gathered}
2.76+3=n+2.76 \\
3 x+(-5.1)=3 \frac{3}{4}
\end{gathered}
$$

Inequality

Example 1

$$
\begin{aligned}
& -3 r \leq 7.5 \\
& \frac{-3 r}{-3} \geq \frac{7.5}{-3} \\
& r \geq-2.5
\end{aligned}
$$

Example 2

$$
\begin{aligned}
-3(n-4) & <0 \\
-3 n+12 & <0 \\
-3 n+12-12 & <0-12 \\
-3 n & <-12 \\
\frac{-3 n}{-3} & >\frac{-12}{-3} \\
n & \stackrel{4}{4}
\end{aligned}
$$

Example 3

$$
\begin{gathered}
\frac{x-7}{-3} \geq 4 \\
-3 \cdot \frac{x-7}{-3} \leq-3 \cdot 4 \\
x-7 \leq-12 \\
x-7+7 \leq-12+7 \\
x \leq-5
\end{gathered}
$$

